Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.

نویسندگان

  • Ross E Larsen
  • Benjamin J Schwartz
چکیده

The hydrated dielectron is composed of two excess electrons dissolved in liquid water that occupy a single cavity; in both its singlet and triplet spin states there is a significant exchange interaction so the two electrons cannot be considered to be independent. In this paper and the following paper,we present the results of mixed quantum/classical molecular dynamics simulations of the nonadiabatic relaxation dynamics of photoexcited hydrated dielectrons, where we use full configuration interaction (CI) to solve for the two-electron wave function at every simulation time step. To the best of our knowledge, this represents the first systematic treatment of excited-state solvation dynamics where the multiple-electron problem is solved exactly. The simulations show that the effects of exchange and correlation contribute significantly to the relaxation dynamics. For example, spin-singlet dielectrons relax to the ground state on a time scale similar to that of single electrons excited at the same energy, but spin-triplet dielectrons relax much faster. The difference in relaxation dynamics is caused by exchange and correlation: The Pauli exclusion principle imposes very different electronic structure when the electrons' spins are singlet paired than when they are triplet paired, altering the available nonadiabatic relaxation pathways. In addition, we monitor how electronic correlation changes dynamically during nonadiabatic relaxation and show that solvent dynamics cause electron correlation to evolve quite differently for singlet and triplet dielectrons. Despite such differences, our calculations show that both spin states are stable to excited-state dissociation, but that the excited-state stability has different origins for the two spin states. For singlet dielectrons, the stability depends on whether the solvent structure can rearrange to create a second cavity before the ground state is reached. For triplet dielectrons, in contrast, electronic correlation ensures that the two electrons do not dissociate, even if the dielectron is artificially kept from reaching the ground state. In addition, both singlet and triplet dielectrons change shape dramatically during relaxation, so that linear response fails to describe the solvation dynamics for either spin state. In the following paper (Larsen, R. E.; Schwartz, B. J. J. Phys. Chem. B 2006, 110, 9692), we use these simulations to calculate the pump-probe spectroscopic signal expected for photoexcited hydrated dielectrons and to predict an experiment to observe hydrated dielectrons directly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 2. A prediction for the observation of hydrated dielectrons with pump-probe spectroscopy.

The hydrated dielectron is a highly correlated, two-electron, solvent-supported state consisting of two spin-paired electrons confined to a single cavity in liquid water. Although dielectrons have been predicted to exist theoretically and have been used to explain the lack of ionic strength effect in the bimolecular reaction kinetics of hydrated electrons, they have not yet been observed direct...

متن کامل

Efficient real-space configuration-interaction method for the simulation of multielectron mixed quantum and classical nonadiabatic molecular dynamics in the condensed phase

We introduce an efficient configuration interaction ~CI! method for the calculation of mixed quantum and classical nonadiabatic molecular dynamics for multiple electrons. For any given realization of the classical degrees of freedom ~e.g., a solvent!, the method uses a novel real-space quadrature to efficiently compute the Coulomb and exchange interactions between electrons. We also introduce a...

متن کامل

Full configuration interaction computer simulation study of the thermodynamic and kinetic stability of hydrated dielectrons.

The hydrated electron is a unique solvent-supported state comprised of an excess electron that is confined to a cavity by the surrounding water. Theoretical studies have suggested that two-electron solvent-supported states also can be formed; in particular, simulations indicate that two excess electrons could pair up and occupy a single cavity, forming a so-called hydrated dielectron. Although ...

متن کامل

Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment.

We use nonadiabatic mixed quantum/classical molecular dynamics to simulate recent time-resolved photoelectron spectroscopy (TRPES) experiments on the hydrated electron, and compare the results for both a cavity and a noncavity simulation model to experiment. We find that cavity-model hydrated electrons show an "adiabatic" relaxation mechanism, with ground-state cooling that is fast on the time ...

متن کامل

Exploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.

Mixed quantum/classical (MQC) molecular dynamics simulation has become the method of choice for simulating the dynamics of quantum mechanical objects that interact with condensed-phase systems. There are many MQC algorithms available, however, and in cases where nonadiabatic coupling is important, different algorithms may lead to different results. Thus, it has been difficult to reach definitiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 19  شماره 

صفحات  -

تاریخ انتشار 2006